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Abstract

The flexural energy distribution in two right-angled point-excited thin plates at high frequencies is
investigated by means of an integral energy flow approach. The fields of energy averaged over time and
frequency are described by the superposition of uncorrelated cylindrical waves stemming from both
boundaries and direct sources. Specular and diffuse laws are considered for the reflection and transmission
of rays, giving rise to two kinds of energy equations. The diffuse law leads to a Fredholm integral equation
over the boundary sources while the specular law is shown to allow an image source solution when the
plates have identical propagation properties. The algorithm for computing the image position, magnitude
and directivities is described. Then, some comparisons between the results from the both energy
formulations and also from the statistical energy analysis and the numerical solution of the equations of
motion are performed with two damped plates at high frequency. The non-diffuse pattern of the averaged
flexural energy fields is well described by the energy flow approaches.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

This paper considers the prediction of the vibratory levels of systems of damped thin plates in
the high-frequency range. At high frequencies, classical finite element methods are not suitable
due to the high sensitivity of responses to systems uncertainties and the high computation cost.
By using statistical hypotheses, energy approaches provide an efficient tool for the evaluation of
averaged energy levels. However, the statistical energy analysis (SEA) [1] which is the most
commonly used tool, assumes that energy fields are diffuse and does not give the energy
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distribution inside systems, but only its averaged value. It consequently leads to poor results when
systems are highly damped and, therefore, when energy fields are non-diffuse.
Several investigations have been performed to overcome this problem. The conductivity

approach initiated by Nefske and Sung [2] and developed by Bouthier and Bernhard [3] is based
on a plane wave decomposition and the diffuse directivity of energy is assumed for both incidence
and transmission at the boundaries. It is shown to be reliable for lightly damped systems only
where energy fields are slightly non-diffuse [4,5]. Kuttruff [6], Miles [7] and Le Bot [8] presented an
integral energy approach using spherical waves in acoustics and cylindrical waves for plates, and
assuming the diffuse law for the reflection of rays. It proves to predict accurately the non-diffuse
energy fields of acoustical enclosures [9] and highly damped plates [10,11]. A similar approach
using specular laws for the emission was also developed by Franzoni et al. [12] and Le Bot [13].
Cotoni et al. applied this approach to radiation problems and obtained an accurate description of
the non-diffuse external acoustic field [10,14]. Recently, Chae and Ih [15] applied a ray tracing
method using the specular reflection law and ray tube concepts. They focused on the ability of the
approach to account for the filtering effect of junctions; that is, all incidences are not similarly
transmitted and reflected.
Very little work has been published on the differences and similarities of energy approaches

using diffuse and specular reflections of energetic rays [16]. This paper is concerned with such a
comparison on a system of right-angled plates with particular stress on the influence of specular
and diffuse directivities to describe the filtering effect of the junction. The propagation of the
flexural energy with cylindrical rays is first addressed. Then, both specular and diffuse directivities
are investigated to characterize the boundary energy conditions of each plate. It is shown that the
image source method may be applied to solve the specular energy equation for coupled plates.
Finally, some comparisons are performed with SEA results and reference results from the solution
of the equations of motion.

2. Description of flexural energy fields

The integral energy flow approach developed in Refs. [8,11,13] is applied to the system of two
right-angled plates as shown in Fig. 1. A complete description of the dynamics of plates in terms
of rays as presented in Ref. [11] requires both out-of-plane and in-plane motions to be taken into
account. But, for a transversely excited thin plate, the out-of-plane motion dominates the
dynamics and, therefore, for the sake of simplicity it is assumed that in-plane motion is negligible.
This section describes the flexural energy field in plates with a decomposition in cylindrical
travelling waves. The energy field for a single cylindrical wave is first derived. Then, the complete
energy field is obtained by super-imposing these elementary fields. Two boundary conditions are
derived depending on the kind of reflection–transmission law adopted for rays at the interface
between plates.

2.1. Energy propagation

Consider a homogeneous plate, damped with the loss factor Z; under harmonic excitation at
pulsation o: The time-averaged flexural energy of the direct field at any point r; due to a point
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source of unit power being injected on point s is sought. Since evanescent waves do not carry any
power and rapidly vanish at high frequencies, the approximate direct energy density G and
intensity vector H are estimated by considering only the travelling wave contribution [8,13]

Gðs; rÞ ¼
1

c

e�mr

2pr
; Hðs; rÞ ¼

e�mr

2pr
usr; ð1Þ

where m ¼ Zo=c is the attenuation coefficient and c is the group speed of flexural waves. r ¼ jr � sj
is the distance between s and r and usr ¼ ðr � sÞ=r is the unit vector in the direction from s to r:
The direct field is reflected when impinging on the boundary G of the plate, giving rise to new

travelling waves. Thus, assuming that all travelling waves are uncorrelated, the complete energy
density W and intensity vector I are the sum of the contributions of the direct sources s with
magnitude pinj and the boundary sources p with magnitude s;

W ðrÞ ¼
Z
O

pinjðsÞGðs; rÞ dOs þ
Z
G
sðp; ypÞGðp; rÞ dGp; ð2Þ

IðrÞ ¼
Z
O

pinjðsÞHðs; rÞ dOs þ
Z
G
sðp; ypÞHðp; rÞ dGp ð3Þ

where O is the domain of the plate and yp the emission angle at p towards r: The first integral in
each expression is the direct field, the second is the reflected field. The boundary sources s may
have a non-uniform directivity. The magnitude pinj of the direct sources is the time-averaged
density of power being injected. For the case of a single driving force at point s0; it is written
pinjðsÞ ¼ Pinjds0 with Pinj being the time-averaged injected power attached to the direct field. It is
derived from the infinite thin plate solution [17], for an applied force F with a bending stiffness D;
and a mass per unit surface m;

Pinj ¼ F2=16
ffiffiffiffiffiffiffiffi
Dm

p
: ð4Þ

Now, the density of source s is to be evaluated, by expressing the appropriate energy boundary
conditions. At this stage, two assumptions may be made on the way energetic rays are reflected
and transmitted. Specular or diffuse laws lead to different forms of energy integral equations. In
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Fig. 1. Two right-angled plates. The plate 1 is excited by a point force.
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the following, all energy quantities are now written with a subscript i; j ¼ 1; 2 of the
corresponding plate.

2.2. Energy reflection and transmission

Any boundary is characterized in terms of energy balance by efficiencies that are the ratios of
reflected and transmitted powers to the incident one. They are usually derived according to the
locality principle valid at high frequencies [18] which states that the dynamics of the coupling only
depends on the local properties of the system in the vicinity of the coupling. The underlying
assumption is that the wavelength is sufficiently small for the boundary to appear locally straight
and homogeneous. For the case of the two coupled plates shown in Fig. 1, the junction is
characterized by a reflection efficiency RiðfÞ and a transmission efficiency TiðfÞ depending on the
incidence angle f: The subscript i denotes the plate of incidence. Explicit values for Ri and Ti may
be found in Ref. [19]. If the other boundaries of the plates are perfectly reflective boundaries (like
simply supported, free or clamped edges) they are characterized by the uniform reflection
efficiency RiðfÞ ¼ 1:
The most general case of junction is now presented (from which the case of edges may be easily

deduced). Following notations in Fig. 2, let ui denote the emission direction with emission angle
yi; u0i and u0j the incident directions from both plates with incidences fi; fj; and ni the outside unit
normal to the boundary of plate i: The power balance at any point p of the junction is written

Pi;emitðuiÞ dyi ¼ RiðfiÞPi;incðu0iÞ dfi þ TjðfjÞPj;incðu0jÞ dfj; ð5Þ

where Pi;incðu0iÞ denotes the incident power at p stemming from the direction u0i and Pi;emitðuiÞ the
emitted power in direction ui: dyi is an infinitesimal angle of emitted directions about ui; dfi the
corresponding angles of incident directions from plate i and dfj the corresponding angles of
incident directions from plate j: These powers may be expressed in terms of the direct sources pi;inj

and the diffracted sources si of Eq. (3).
Considering first the diffuse law for reflection and transmission [20], any ray impinging on the

boundary is assumed to be reflected and transmitted with the Lambert directivity, i.e., with a
magnitude proportional to the cosine of the emission angle, whatever is the incident angle. The
magnitude of the boundary sources siðp; yÞ may be factorized in siðpÞ cos y: By integrating Eq. (5)
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Fig. 2. Power balance at the point p of the interface between plates i and j:
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over all emission angles and related incident angles, a Fredholm equation of second kind on the
unknowns si is obtained [8,9,11],

siðpÞ
p

¼
Z
Oi

RiðfsÞpi;injðsÞHiðs; pÞ dOs þ
Z
Gi

RiðfqÞsiðqÞ cos yqHiðq; pÞ dGq

� �
� ni

þ
Z
Oj

TjðfsÞpj;injðsÞHjðs; pÞ dOs þ
Z
Gj

TjðfqÞsjðqÞ cos yqHjðq; pÞ dGq

" #
� nj; ð6Þ

where yq is the emission angle at q towards p and fs (resp. fq) the incident angle at p from s (resp.
q). The terms in the first brackets are the reflected power from plate i; and the second brackets the
transmitted power from plate j to plate i: Note that although the emitting directivity is postulated
following the Lambert law, the incidence is not assumed to be diffuse and the directional
efficiencies RiðfÞ and TjðfÞ used in Eq. (6) are not the mean-efficiency %T ¼

R p=2
0 TðfÞ cosðfÞ df

usually preferred in SEA. Eq. (6) may be solved with a collocation algorithm as detailed in Section
3. Substituting its solutions for s1 and s2 in Eq. (2) gives the energy field in each plate.
Consider now that the specular law for reflection and transmission applies for rays. The power

balance (5) is applied direction by direction. The emission angle yi is now related to the incident
angle fj by Snell’s law of refraction sin yi=c0i ¼ sin fj=c0j where c0i is the phase speed in plate i:
Indeed fi ¼ yi and yj ¼ fj is also introduced. Incident angles fi; fj are no longer necessary and
the notations yi; yj are now preferred. The points p0i are defined as being the point lying in the
boundary Gi in such a manner that the point p is viewed from p0i in direction u0i: The emission angle
at p0i is y

0
i: From Ref. [13], the functional equation for the diffraction sources si located on each

side of the interface at any point p is

siðp; yiÞ
cos yi

¼RiðyiÞ
siðp0i; y

0
iÞ

cos y0i
e�mir

0
i þ

Z
p0

i
p

pi;injðsÞ e�mis ds

" #

þ
c0j

c0i
TjðyjÞ

sjðp0j; y
0
jÞ

cos y0j
e�mjr

0
j þ

Z
p0

j
p

pj;injðsÞe�mjs ds

" #
; ð7Þ

where r0i ¼ jp0i � pj; s ¼ js � pj: The first term in each bracket is the contribution of other boundary
sources si modified with the attenuation term e�mir

0
i ; whereas the second term, an integral over the

path p0ip is the contribution of the actual sources pi;inj located inside the plate i: The points p0i may
not exist in some particular situations like semi-infinite plates. In such a case the corresponding
terms in the previous equation must be cancelled and the integral for actual sources is extended to
a semi-infinite line Np: The functional equation (7) may be solved by the image source method
when the plates have identical propagation properties, as will be shown in Section 4.

2.3. Application limits

Integral energy approaches are based on the three assumptions that (i) vibrating fields are
composed of rays, (ii) these rays are uncorrelated, (iii) couplings are local phenomena. The first
and third assumptions are those invoked by classical ray methods so that a similar validity range
is expected for the integral energy approaches: the wavelength must be small compared to the
characteristic dimensions of systems. This condition is well suited as frequency increases, meaning
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that the approach is confined to middle and high frequencies. Another consequence is that the
near fields are neglected leading to an incorrect description of energy in the neighborhood of
discontinuities. The second assumption is related to the uncertainty on the phase of rays at high
frequency, which leads to the use of energy variables as in SEA [1]. The validity in terms of
frequency will consequently be similar as that of SEA. However, no assumption has been made on
the diffuse nature of the vibrating fields so that the integral energy approaches allow the SEA
prediction to be extended to systems with non-diffuse fields.

3. Collocation solution for the integral equation (6)

The integral equation (6) is solved for the couple of square plates of Fig. 1 by using the
collocation method.
Each edge of the plates is divided into a limited number of elements Lk; k ¼ 1; 2;y of equal

size. The magnitude si of the boundary sources is assumed to be constant over each boundary
element. The unknown magnitude attached to the boundary element numbered k is sk

i : For each
element k; Eq. (6) which depends on the position of the element at the edge or interface, is applied
at the middle pk of the element. This point pk is called the collocation point. First, for an element k

located at the edge of plate i;

sk
i ¼ p Pi;injHiðs0; pkÞ cos fs0

þ
X

l

sl
i

Z
Ll

Hiðq; pkÞ cos yq cosfq dGq

" #
; ð8Þ

where fs0
is the incidence angle at the collocation point pk from the actual source s0; fq is the

incidence angle at pk from q; and yq is the emanating direction at q: Hi is the magnitude of the
intensity Hi: The first term inside the brackets is the direct contribution of the actual source, and is
to be considered for plate 1 only, since plate 2 is not directly excited ðP2;inj ¼ 0Þ: The second sum
runs over all boundary elements of the plate. Second, for an element located at the interface
between the two plates,

sk
i ¼ p Pi;injRiðfs0

ÞHiðs0; pkÞ cosfs0
þ

X
l

sl
i

Z
Ll

RiðfqÞHiðq; pkÞ cos yq cosfq dGq

"

þ Pj;injTjðfs0
ÞHjðs0; pkÞ cosfs0

þ
X

l

sl
j

Z
Ll

TjðfqÞHjðq; pkÞ cos yq cosfq dGq

#
: ð9Þ

Thus, the set of Eqs. (8) and (9) leads to a system of linear equations for the unknowns sk
i :

The coefficients involve some integrals evaluated by Gauss quadrature. Once the source
magnitudes sk

i are computed, the energy density inside plate i is evaluated from the discrete
version of Eq. (2),

WiðrÞ ¼ Pi;injGiðs0; rÞ þ
X

k

sk
i

Z
Lk

Giðp; rÞ cos yp dGp: ð10Þ
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4. Image source solution for the functional equation (7)

The problem is now to solve the functional equation (7) for the pairs of square plates of Fig. 1.
Several methods are available, such as boundary element method proposed in Ref. [12], where the
directivity of each source is discretized with a Fourier series expansion, or the ray tracing
approach based on ray tubes developed in Ref. [15]. However, it will be shown that the current
problem can be solved with the image source technique due to the simple geometry. We proceed in
two steps. The first step is to solve the equation for the case of two semi-infinite plates separated
by an infinite interface. A single excitation point acts in plate 1. The second step is to apply the
image source technique for the pair of square plates.

4.1. Two semi-infinite plates

First, consider a steady state source point s0ð0; hÞ within plate 1 and a point pðn; 0Þ lying on the
interface whose equation is y ¼ 0 (see Fig. 3). The actual source density is written pinjðsÞ ¼ Pinjds0 :
where Pinj is given in Eq. (4). Both plates are considered semi-infinite, and the functional equation
(7) for the interface reduces to

s1ðn; y1Þ
cos y1

¼ R1ðy1Þ
Z
Np

Pinjds0ðsÞe
�m1s ds; ð11Þ

s2ðn; y2Þ
cos y2

¼
c01
c02

T1ðy1Þ
Z
Np

Pinjds0ðsÞe
�m1s ds: ð12Þ

The delta Dirac function may be expanded in polar co-ordinates ðs; yÞ centered at p;

ds0ðsÞ ¼
drnðsÞdjn

ðyÞ
s

; ð13Þ

where rn ¼ js0 � pj ¼ ½n2 þ h2
1=2 and jn is the incident angle at p from s0: It leads to the solutions:

s1ðn; y1Þ
cos y1

¼ PinjR1ðy1Þ
e�m1rn

rn
djn

ðy1Þ; ð14Þ

s2ðn; y2Þ
cos y2

¼ Pinj
c01
c02

T1ðy1Þ
e�m1rn

rn
djn

ðy1Þ: ð15Þ

In the second equality, the angles y1 and y2 are related each other with Snell’s law for refraction.
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First, let rðx; yÞ be any point in plate 1. Following Eq. (2) the energy density W1 is found to be

W1ðrÞ ¼ Pinj

e�m1q0

2pc1q0
þ

Z
N

�N

s1ðn; y1Þ
e�m1dn

2pc1dn
dn; ð16Þ

where q0 ¼ js0 � rj ¼ ½x2 þ ðy � hÞ2
1=2 and dn ¼ jp � rj ¼ ½ðx � nÞ2 þ y2
1=2: y1 is the emission
angle at p towards r: Substituting Eq. (14) into Eq. (16) gives

W1ðrÞ ¼
Pinj

2pc1

e�m1q0

q0
þ

Z
N

�N

R1ðy1Þ
e�m1rn

rn
djn

ðy1Þ
e�m1dn

dn
cos y1 dn

� �
: ð17Þ

Now let cn ¼ y1 � jn: There exists one point p0 at n0 which fulfills the condition y1 ¼ jn0 : The
emission angle y1 is equal to the incident angle jn0 : Then,

W1ðrÞ ¼
Pinj

2pc1

e�m1q0

q0
þ R1ðy1Þ

e�m1r0

r0

e�m1d0

d0

cos y1
jdcn
dn jn¼n0

" #
; ð18Þ

where r0 ¼ ½n20 þ h2
1=2 and d0 ¼ ½ðx � n0Þ
2 þ y2
1=2 have been substituted for rn0 and dn0 :

Furthermore,

cn ¼ arctan
n� x

y
þ arctan

n
h
: ð19Þ

By differentiating with respect to n;

dcn

dn
¼

1=y

1þ ðn�x
y
Þ2
þ

1=h

1þ ðn
h
Þ2

¼
y

d2
n
þ

h

r2n
: ð20Þ

Since yX0 and h > 0; the derivative is never zero, and expression (18) is always defined. Then,

W1ðrÞ ¼
Pinj

2pc1

e�m1q0

q0
þ R1ðy1Þ

e�m1r0

r0

e�m1d0

d0

cos y1
ð y

d2
0

þ h
r2
0

Þ

2
4

3
5: ð21Þ

Noting that cos y1 ¼ y=d0 ¼ h=r0; this yields

W1ðrÞ ¼
Pinj

2pc1

e�m1q0

q0
þ R1ðy1Þ

e�m1q1

q1

� �
ð22Þ

with q1 ¼ d0 þ r0: W1 is shown to be the sum of the contributions of the actual source located at
s0ð0; hÞ with magnitude Pinj; and the image source at s1ð0;�hÞ with magnitude R1ðy1ÞPinj: Note
that the image source magnitude is not uniform, but accounts for the filtering effect of the
reflection efficiency R1ðy1Þ:
Now consider any point rðx; yÞ in plate 2. According to Eq. (2), the energy density W2 is

W2ðrÞ ¼
Z

N

�N

s2ðn; y2Þ
e�m2dn

2pc2dn
dn ð23Þ

with dn ¼ jp � rj ¼ ½ðx � nÞ2 þ y2
1=2: y2 is the emission angle at p towards r:

W2ðrÞ ¼
Pinj

2pc2

c01
c02

Z
N

�N

T1ðy1Þ
e�m1rn

rn
djn

ðy1Þ
e�m2dn

dn
cos y2 dn; ð24Þ
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where y1 is the angle related to y2 with Snell’s law of refraction. Now the condition cn ¼ 0 states
that the incident angle jn0 and the emission angle y2 satisfy the Snell condition. Furthermore,

dcn

dn
¼
dy1
dy2

dy2
dn

�
djn

dn
¼

c01
c02

cos y2
cos y1

�1=y

ð1þ ðn�x
y
Þ2Þ

þ
1=h

ð1þ ðn
h
Þ2Þ

¼
c01
c02

cos y2
cos y1

jyj
d2
n
þ

h

r2n
: ð25Þ

Using the condition yp0;

W2ðrÞ ¼
Pinj

2pc2

c01
c02

T1ðy1Þ
e�m1r0

r0

e�m2d0

d0

cos y2
c0
1

c0
2

cos y2
cos y1

jyj
d2
0

þ h
r2
0

� �
2
64

3
75: ð26Þ

With cos y1 ¼ h=r0 and cos y2 ¼ jyj=d0; it yields

W2ðrÞ ¼
Pinj

2pc2
T1ðy1Þe�ðm1r0þm2d0Þ c01

c01r0
cos y2
cos y1

þ c02d0
cos y1
cos y2

� �
2
4

3
5: ð27Þ

This relationship is not related with an image source solution except when c01 ¼ c02; that is, the
plates have identical propagation properties. In this case, y1 ¼ y2 and Eq. (27) reduces to

W2ðrÞ ¼
Pinj

2pc1
T1ðy1Þ

e�m1q1

q1

� �
ð28Þ

with q1 ¼ d0 þ r0:
The second step is to solve the problem for the couple of square plates shown in Fig. 1. Now,

the problem is reduced to the particular case where c01 ¼ c02 and thus, the image source technique is
valid.

4.2. Two finite plates with identical propagation properties

Since both plates of Fig. 1 have identical propagation properties, incidence and transmission
angles at the junction are equal. In addition, R1 ¼ R2 and T1 ¼ T2 and the subscripts will be
omitted in the following.
For finite plates, an infinite number of image sources contributes to the energy. A recursive

procedure is used to compute the position, magnitude and directivity of the image sources which
account for the successive reflections and transmissions [21]. At step n; the algorithm computes the
positions and magnitudes of all image sources of order ðn þ 1Þ: Note that due to the rectangular
geometry of the plates, distinct sources of the same order may produce identical sources of higher
order. For instance, a source which reflects at a corner successively to the right and to the upper
edge or the upper and the right edge, gives rise to the same image source as depicted in Fig. 4. The
mathematical reason is that two symmetries with respect to right-angles axes commute. In this
case, the new similar sources are to be taken into account just one time.
Two important properties of rectangular billiards greatly simplify the determination of the

image sources [22]. The first one is that during its travel, a ray impinges on the interface always
with the same incidence y as illustrated in Fig. 5. The magnitude of the corresponding image
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source is thus a product of terms RðyÞ and TðyÞ depending on the number of reflections and
transmissions through the interface. Other reflections do not modify the magnitude since the
reflection efficiency of edges is assumed to be one. The second property of a rectangular billiards
leads to splitting the problem into two separated steps. The first one is the determination of
reflections along the y-axis and the second one is the determination of reflections and
transmissions along the x-axis. The positions of the images sources created by reflections along
the y-axis are shown in Fig. 6. They are easily computed by applying symmetries to the actual
source with respect to the edges y ¼ b=2 and �b=2 where b is the width of plates. Since the
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reflection efficiency of edges is one, all these image sources have the same magnitude. Now, it may
be considered that all image sources of Fig. 6 reflect along the x1- and x2-axis as a group. The
problem is thus confined to the ðx1; x2Þ-plane.
From now on, the order of a source is defined as the number of reflections and transmissions

along the x1 and x2 axis without counting reflections along the y-axis. To start the algorithm, it is
considered that three events may occur to the actual source: a reflection on the right edge, a
reflection on the interface and a transmission through the interface (Fig. 7). The first two events
give rise to image sources located along the x1-axis and are obtained by applying symmetries with
respect to the right edge and the interface. The magnitude of the first one is unchanged and the
magnitude of the second one is RðyÞ: They are the only image sources of first order acting on plate
1 and they are denoted s11;i; i ¼ 1; 2 with magnitudes A1

1;1 ¼ 1 and A1
1;2 ¼ RðyÞ: The superscript

denotes the plate of interest, the first subscript is the order of the source and the second subscript
runs over 1,2. The third event is the transmission through the interface. The corresponding image
source acting on the second plate is obtained by turning down the actual source on the x2-axis. It
is denoted s21;1 with a magnitude A2

1;1 ¼ TðyÞ (Fig. 7).
Now, it is apparent that all image sources lying on the x1-axis act on plate 1 whereas those

sources located on x2-axis only act on plate 2. At step n of the algorithm, several events (reflection
and transmission) may occur to sources of order n: The nature of these events depends on the
position of the sources. A source located on the right of the interface (Fig. 8a) may be

* reflected by the interface: it is thus submitted a symmetry with respect to the interface, and its
magnitude is multiplied by RðyÞ;

* transmitted through the interface: it is thus turned down to the x2-axis, and its magnitude is
multiplied by TðyÞ:

A source located on the left of the interface (Fig. 8b) may only be reflected by the right edge and
thus submitted to a symmetry with respect to that edge with an unchanged magnitude. A source
located below the interface (Fig. 8c) may only be reflected on the upper edge with an unchanged
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magnitude. Finally, a source located above the interface (Fig. 8d) may be

* reflected by the interface, and its magnitude is multiplied by RðyÞ;
* transmitted through the interface and then is turned down to the x1-axis, with its magnitude

multiplied by TðyÞ:

By recursively applying this algorithm, all the image sources that is, all the paths between the
actual source and any point on plate 1 or 2 are determined.

si
n;k and Ai

n;kðyÞ are the position and magnitude of the kth image source of order n acting on
plate i: y denotes the angle between the vector r � si

n;k from the source to the observation point
and the outside normal to the interface ni: Now, k runs over �N to N to take into account the
effect of reflections along the y-axis. The sources of order 0 and 1 and some sources of order 2 are
shown in Fig. 9. At any point r in plate 1; the energy is the sum of all contributions of the actual
source s0 and image sources s1n;k;

W1ðrÞ ¼ PinjG1ðs0; rÞ þ
XN
n¼1

XN
k¼�N

A1
n;kðyÞG1ðs1n;k; rÞ: ð29Þ
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Fig. 8. Image sources describing the reflections and transmission of the image source si
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Similarly, for plate 2,

W2ðrÞ ¼
XN
n¼1

XN
k¼�N

A2
n;kðyÞG2ðs2n;k; rÞ: ð30Þ

In these expressions, the angle y depends on the location of the source si
n;k and observation point r:

5. Results and discussion

The energy fields of the two right-angled plates of Fig. 1 are now evaluated by both reference
and energy approaches. The calculations are summarized in the next section. Then the global
energy level and the energy distribution inside each plate are investigated.

5.1. The calculated system

Calculations have been performed with two identical aluminum plates (r ¼ 2800 kg m�3; n ¼
0:3; E ¼ 72� 109 Nm�2). The plates are 1 m square, of thickness 10�3 m; clamped on the sides
parallel to the junction and simply supported on the other sides. Plate 1 is excited by a transverse
force of 1 N at the point s0 given by x1 ¼ 0:2 m; y ¼ 0:3 m: Both plates are damped with a loss
factor Z ¼ 1%: The calculation frequency is chosen in order to get 40 flexural wavelengths within
the plates, thus f ¼ 16 000 Hz:
The reference result is the numerical solution for the Love–Kirchhoff’s plate equations with the

relevant boundary and coupling conditions. It is derived using the approach developed in Ref. [23]
with the same assumption that plates are rigid in-plane, i.e. in-plane displacements are neglected.
Due to the simply supported boundary conditions, the displacement field is thought of as the sum
of sine functions in the y direction. A wave decomposition is applied in the x1;2 directions. Like
SEA, integral energy approaches give an averaged estimation of the real response, and three
reference calculations have consequently been performed depending on the kind of average that is
achieved: since frequency, material properties and geometry can be considered as being only
inaccurately known, the energy has been averaged over the frequency, oA½oc � Do=2;oc þ
Do=2
; Young’s modulus, EA½Ec � DE=2;Ec þ DE=2
; and the excitation location,
s0A½s0c � Ds0=2; s0c þ Ds0=2
). The subscript c denotes the centre value of the variables given
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below. In each case, the range of variation is calculated to get a variation of one wavelength in the
smallest distance between two sources. For the present system, this smallest distance is between
the direct source on plate 1 and the boundary x1 ¼ 0 m:
Energy calculations use the injected power of Eq. (4), and the efficiencies at the junction

evaluated with the wave decomposition of Ref. [17], by keeping in mind that the plates are
assumed to be rigid in-plane. Since both plates have identical propagation properties, R1 ¼ R2

and T1 ¼ T2 and the subscripts may be omitted. The variations of RðyÞ and TðyÞ at the frequency
of excitation ð16 000 HzÞ are shown in Fig. 10, where it can be seen that the transmission is higher
for low angles.
The integral energy formulation with the specular directivity is derived with the image source

method described in Section 4.2. The level N of the image sources to be considered in order to get
a good estimation of the energies is defined by considering that sources of level higher than N
have negligible contributions. The criteria given in Ref. [24] is expressed in terms of the percentage
P of energy which should have been attenuated, the average absorption coefficient at boundaries
a; the mean free path of the plates l; and the attenuation coefficient m ¼ Zo=c: N ¼ lnð1�
PÞ=½lnð1� aÞ � ml
: In the present example, no boundary absorption is to be considered and the
mean free path for plates is given in Ref. [17] by l ¼ pS=L; where S and L denote the surface and
perimeter of plate. By choosing P ¼ 99:99%; one obtains for the present calculation N ¼ 10: Note
that due to the frequency dependence of the attenuation coefficient, the required CPU-time for the
image source approach reduces as the frequency increases, which is a very interesting feature
compared to reference calculations.
For the integral energy formulation with the Lambert directivity, the collocation algorithm of

Section 3 with 10 elements per side of plate was used. Eqs. (8) and (9) are consequently derived by
solving an 80� 80 linear system. It is not required for the size of the boundary elements to be
small compared to the flexural wavelength, since the describing variable is the averaged energy
density whose variations are expected to extend over much more than one wavelength. The size of
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the element is only related to the non-diffuse characteristic of the energy field which is directly
related to the damping and geometry. As a result, while the required CPU-time for the reference
calculation increases with the frequency, it remains quite stable for the integral energy approach.
However, both integral energy approaches remain more time expensive than SEA and require a
better knowledge of the system. Note that the low computation time is not the only interest of the
energy approaches which provide a new intuitive tool to analyze the vibrations of structures at
high frequencies.
Some SEA calculations have been performed using the same injected power (4) and efficiencies.

By noting Ei the total energy of the plate i; the global power balances for both plates are written as

Pinj ¼ ZoE1 þ Z12oE1 � Z21oE2;

0 ¼ ZoE2 þ Z21oE2 � Z12oE1; ð31Þ

where Z12 and Z21 are the coupling loss factors. Since the plates are identical, Z12 and Z21 are equal.
They are expressed in terms of the transmission efficiency by the integral over all incidence angles,

Z12 ¼ Z21 ¼
Lc

opS

Z p=2

0

TðyÞ cos y dy; ð32Þ

where L is the junction length, c the group speed of flexural waves and S the surface of the plates.

5.2. Global energy

The injected power and the total energy stored in each plate are shown in Table 1 for reference,
energy and SEA results. Energies E1 and E2 are the integrals of the energy densities W1 and W2

given by the reference calculation and the integral energy approaches in Eqs. (29), (30) and (10).
They are expressed in dB (re 10�8 J). It is shown that the averaged injected powers by the three
reference calculations are in good agreement with that given by Eq. (4). Concerning the energies,
both integral energy results are very close to the reference ones. The SEA results are less accurate,
which was expected since the plates are highly damped. In particular, the transmitted energy in
plate 2 is underestimated because of the importance of the direct field contribution in plate 1: since
the direct source is close to the junction, the average energy on the plate 1 as predicted by the SEA
is less than the real energy on the junction. Consequently, the predicted level of transmitted energy
is lower. The spatial description of energy by the integral energy approaches succeeds in
improving the prediction accuracy.
Note that the information on the strength of damping is given by the attenuation coefficient m

rather than by the damping coefficient Z: Indeed, the attenuation coefficient is directly involved in
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Table 1

Injected power and total energy in both plates, by the three reference calculations, the SEA and the two integral energy

approaches

Reference /oS Reference /ES Reference /s0S SEA Specular Lambert

Pinj (mW) 14.54 14.74 14.74 14.55 14.55 14.55

E1 (dB) 31.07 31.11 31.07 31.36 31.06 31.02

E2 (dB) 21.82 21.82 22.10 19.04 21.62 21.94
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the decreasing the energy of rays as shown by Eqs. (1). In the present case, the attenuation
produced by damping over the mean free path l is e�mlB0:36; meaning that in average, one third
of the energy is attenuated between two successive reflections of rays.

5.3. Distribution of energy

The contour plots of the flexural energy distribution in both plates by reference and integral
energy calculations are shown in Fig. 11. Plate 1, directly excited, is on the right. Energy densities
are expressed in dB (re 10�8 J m�2). The reference calculation corresponds to the frequency-
averaged results. However, the three averages lead to very similar results. In both plates the
energy field is shown to be not diffuse, with more than 6 dB of variation in each plate. These
variations are described well by the energy flow approaches. One easily recognizes the cylindrical
pattern of the direct field due to the excitation in plate 1. Regarding the energy field in plate 2, it
may be observed that the specular directivity leads to a slightly better description than the diffuse
one. Due to the proximity of the direct source in plate 1, the upper-right corner of plate 2
(x2 ¼ 0 m; y ¼ 0:5 m) shows the higher energy level, which is predicted by both energy
approaches. However, the energy density does not have a cylindrical shape centered on the upper-
right corner as predicted by the diffuse directivity. The specular law provides a more reliable
description. The reason is that the specular law accurately accounts for the filtering effect of the
junction: the largest part of the transmitted energy in plate 2 comes from the part of plate 1
around the excitation where the energy level is the higher. Since the transmission efficiency is
lower for large incidence angles (see Fig. 10), the energy transmitted in plate 2 is lower on the low
part of plate 2 ðyo0Þ than in the upper part ðy > 0Þ: This effect is well predicted by the integral
energy approach with the specular directivity.
For both energy flow approaches, the prediction in the vicinity of the driving point and the

boundaries is incorrect because near-field terms are neglected in the description. One may consider
that a distance of one wavelength is enough for this terms to be negligible, which is 0:025 m in the
present case.

6. Conclusions

The integral energy flow approach presented is shown to be particularly suitable for damped
systems at high frequency, when energy fields are not diffuse. The main assumptions of the
method are the decomposition in uncorrelated cylindrical waves, and the kind of reflection–
transmission law to be used at boundaries. It is shown that both specular and Lambert laws lead
to an accurate estimation of the averaged energy fields. The specular law seems to give a better
description of the distribution of energy since it accounts for the filtering effect due to the
dependence of reflection and transmission efficiencies on the incidence angle.
Compared to the SEA, the integral energy approaches require more CPU-time as well as a more

complete knowledge of the system. As a result, they lead to a more reliable description of the
system and give the distribution of energy inside subsystems. Compared to a reference resolution,
the integral energy approaches give averaged values of the energy density, with a great gain in
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Fig. 11. Flexural energy distribution in both plates, in dB (re 10�8 J m�2). The reference frequency averaged result, and

the energy flow results with specular and Lambert directivities are presented. The SEA gives W1 ¼ 31:36 dB and

W2 ¼ 19:04 dB:
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CPU-time. They also provide an interesting tool to analyze the vibrations of structures at high
frequencies.
Although the diffuse and specular versions of the energy flow approach only differ by the

assumed directivity of reflected and transmitted rays at boundaries, they lead to completely
distinct mathematical resolutions. It is shown in this paper that the image source method is
suitable to solve the specular case. However, even if the image source method may be extended to
non-rectangular geometries as was done for acoustic rooms in Ref. [21], it is applicable only when
the coupled plates have the same propagation properties. In other cases, ray or boundary element
approaches may be used to solve the equations for the specular reflection [12,15]. On the other
hand, the integral equation derived with the diffuse reflection is general and may be easily solved
for any geometries and material of coupled plates by using the standard collocation procedure
described in this paper.
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